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Abstract 

The unresolved transition array (UTA) model of atomic spectra describes the lines in a 

configuration-to-configuration transition array with a single feature that conserves the total 

strength as well as the energy first and second strength-weighted moments. A new model is 

proposed that uses a relatively small detailed line calculation together with the extant variance 

formula to generate a series of Gaussians to describe the transition array. This partially resolved 

transition array (PRTA) model conserves the known array properties, yields improved higher 

moments, and systematically accounts for initial level populations. Numerical examples show 

that the PRTA model provides excellent fidelity to line-by-line methods using only a small 

fraction of the computational effort for the full calculations. 
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1. Introduction 

An accurate description of plasma radiative properties is important in many research areas 

including astrophysics and inertial confinement. In cases where the plasma contains partially 

ionized atoms the detailed line accounting (DLA) method is, in principle, the ideal approach to 

calculate the bound-bound spectrum. 

In local thermal equilibrium (assumed throughout the present work) the spectrum expression 

using DLA methods is proportional to 

 

€ 

figie
−ε i Tφi ω −ω i( )

i
∑  (1.1) 

where the sum is over all spectral lines. Here, 

€ 

fi ,   

€ 

ω i , and 

€ 

φi are the oscillator strength, energy, 

and intrinsic line shape of the 

€ 

ith  line, 

€ 

ε i and 

€ 

gi  are the energy and degeneracy of the initial level 

for the 

€ 

ith  line, and 

€ 

T  is the plasma temperature in energy units. For complex ions, however, the 

myriad spectral lines make DLA calculations impractical [1]. One approach to circumvent this 

impasse is the unresolved transition array (UTA) model where the lines in a transition array are 

treated statistically as a single unresolved feature [2,3]. 

Consider a transition array consisting of 

€ 

N  spectral lines linking two electronic 

configurations by a dipole radiative transition. The energy-strength moments of the transition 

array are defined for 

€ 

q ≥1 as 

 
  

€ 

µq = S−1 ω n( )q sn
n=1

N

∑  (1.2) 

where the sum is over the lines in the transition array and 

 

€ 

S = sn
n=1

N

∑  (1.3) 

with 

€ 

sn  the strength of the 

€ 

nth  line, 

 
  

€ 

fn =
ω n

3gn
sn  . (1.4) 

Although the moments in Eq. (1.2) can be computed without performing an eigendecomposition 

of the Hamiltonian, this is computationally expensive (see Appendix). Fortunately, compact 

formulas are available for the total strength 

€ 

S, energy mean 

! 

µ1, and variance 

! 

" = µ2 # µ1
2 ; 

thus, avoiding the expensive calculations [2,3]. 
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The implementations of the UTA approach typically choose a Gaussian for the energy-

strength distribution of the transition array so that the spectral lines are described by 

 
  

€ 

fUTA exp − ω − µ1( )2 2σ 2{ } (1.5) 

where the array oscillator strength is given by 

 

€ 

fUTA =
µ1
3Π

S

≈ fn
n=1

N

∑
 (1.6) 

with 

€ 

Π the degeneracy of the initial configuration. To compute the spectrum the Gaussian in 

Eq. (1.5) is convolved with the intrinsic line profile and weighted by the abundance of the initial 

configuration. This procedure allows for a fast calculation of the bound-bound spectrum. 

It is known, however, that the Gaussian is often not the proper form of the energy-strength 

distribution. Indeed, including improved higher moments can yield better agreement with 

experiments [4,5] and explicit moment calculations show that most transition arrays relevant to 

Al photon absorption experiments are asymmetrical [1]. Unfortunately, obtaining practical 

expressions of higher moments for the general case has not been possible [5]. Furthermore, 

knowledge of higher moments is not sufficient. That is, the true energy-strength distribution is 

unknown and there are issues with the alternative choices to the Gaussian [5]. Another limitation 

of the UTA approach is the assumption of statistically populated initial levels, which can impact 

the spectrum [1,6]. Simply using an energy-strength distribution with improved values for the 

higher moments 

€ 

µq  does not alleviate this inadequacy (see Appendix). 

The DLA methods have two related but separable computational challenges. The first is 

obtaining the atomic data (line energies and strengths) dominated by the configuration term 

structure calculation. The second is generating the spectrum from the myriad lines, which can be 

onerous using straightforward procedures. Recently a method for generating spectra was 

proposed that is highly efficient for large-scale problems and mitigates the second of these 

challenges [7]. 

The purpose here is to present an extension of the UTA approach to complement DLA efforts 

and reduce the computational time of the atomic data calculation. The proposed model replaces 

the single feature of a UTA by a number of Gaussians that conserve the known arrays properties 

and yields improved higher moments. The model also accounts for the dependence on the initial 
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level populations. Section 2 introduces the method with numerical examples given in Sections 3 

and 4 followed by Conclusions in Section 5. 

2. Partially resolved transition array model 

Assuming there are 

€ 

M  open subshells in the transition array, then it can be symbolically 

written as 

   

€ 

η1
ν 1η2

ν 2λ3
ν 3λM

ν M →η1
ν 1 −1η2

ν 2 +1λ3
ν 3λM

ν M  (2.1) 

where 

€ 

η and 

! 

"  denote subshell quantum numbers (  

! 

n! or   

! 

n!j ) and 

! 

"  is the number of electrons 

occupying the subshell. Here the 

€ 

η 's represent active subshells in the transition while the 

! 

"'s  

represent spectator or passive subshells. 

The variance of the transition array in Eq. (2.1) is given by [2,3] 

 

€ 

σtot
2 =σ2 η1

ν 1η2
ν 2 →η1

ν 1 −1η2
ν 2 +1( ) + νm Πm −νm( )σ2 λmη1 →λmη2( )

m=3

M

∑  (2.2) 

where 

€ 

Πm is the degeneracy of the 

€ 

λm  subshell. The result in Eq. (2.2) has the interesting 

property that the contributions from each of the passive subshells add separately. Furthermore, 

since the coefficient in the sum over passive subshells contains all the dependence on the 

subshell number occupation, the property applies to each spectator electron. 

The formula for the variance suggests the following scheme to compute the bound-bound 

spectra for transition arrays with a large number of lines. The idea is to split the open subshells 

into two groups: main and secondary. Although this separation is arbitrary, the intent is to 

include in the main group those electrons that couple strongly to the active electrons while 

relegating the rest to the secondary group. 

2.1 Detailed line accounting component 

Assume the main group in Eq. (2.1) is defined by the first 

€ 

MK  subshells. Now perform a 

DLA calculation for the transition array that only includes the main group in the angular 

momentum coupling, but retains the radial integrals for the complete calculation. Symbolically, 

   

€ 

η1
ν 1η2

ν 2λ3
ν 3λk

ν k →η1
ν 1 −1η2

ν 2 +1λ3
ν 3λM K

ν MK  (2.1.1) 

and say it produces 

! 

K  lines. 

2.2 Statistical component 

To conserve the total variance in Eq. (2.2), each of the 

€ 

K  lines is assigned the variance, 
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€ 

σK
2 = νm Πm −νm( )σ2 λmη1 →λmη2( )

m=M K +1

M

∑  . (2.2.1) 

which is the remainder of 

€ 

σtot
2  from the secondary group not accounted by the 

! 

K  lines. 

2.3 Model implementation 

The proposed method computes the contribution to the line spectrum in two parts. The first 

involves an explicit DLA calculation of the main group that is by design small compared to the 

full DLA calculation. The second portion is statistical and assigns the variance from the 

secondary group to each of the lines generated in the small-scale DLA calculation. As a result, 

the method is considered a partially resolved transition array (PRTA) model. 

The spectrum for the transition array is described by a sum of Gaussians, 

 
  

€ 

f n exp −2 ω −ω k( )2 2σK
2{ }g ke

−ε k T

k =1

K

∑  (2.3.1) 

where the symbols with a bar have the same meaning as in the DLA methods but now for the 

small-scale DLA calculations. Note that  

 

€ 

f k
k =1

K

∑ ≈ fn
n =1

N

∑  (2.3.2) 

conserving the total transition array oscillator strength, which depends only on the active 

subshells except for how the spectator electrons affect line energies [8]. Also, Eq. (2.3.1) 

includes Boltzmann factors, which approximate the spectrum dependence on initial level 

populations. As before, the Gaussians are convolved with the intrinsic line profile. 

3. Numerical examples: Single transition array 

The PRTA scheme is now tested against DLA and UTA models. All calculations make the 

single configuration approximation where the radial integrals are computed in the Dirac-Hartree-

Slater self-consistent field including Breit and QED corrections [9,10]. The DLA calculations 

use jj-coupling based on the quasi-spin concept plus the reduced coefficients of fractional 

parentage [11]. A Voigt profile describes the intrinsic line shape where the Gaussian and Lorentz 

components are attributed to Doppler and an estimated natural width, respectively. This 

approximate lower limit of the line width is chosen to minimize merging of the lines in the DLA 

calculation. All UTA calculations use the spin-orbit split-array version [3]. 
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The spectrum has temperature dependence from Doppler broadening and Boltzmann 

weighting of the initial levels. The temperature in these calculations is chosen so that the ion 

charge state featured in the example agrees with the ionization average from a Thomas-Fermi 

[12] calculation at one-hundredth normal density of the material. It is stressed that all the 

approximate spectra calculations conserve oscillator strength as well as the strength-weighted 

energy mean and variance of the DLA results. 

The examples compare spectra using up to 4 subshells in the main group, which always 

contain the 2 active subshells. When include, the third and fourth subshells make the largest and 

next largest contributions to the variance among the passive subshells. Table 1 summarizes the 

results presenting the number of open subshells and lines in the full and small-scale DLA 

calculations. The table also gives the fraction of the total variance squared retained in the DLA 

component of the PRTA scheme, 

 

€ 

R ≡1− σK
2 σtot

2( )  (3.1) 

with 

€ 

σK
2  and 

€ 

σtot
2  given by Eqs. (2.2.1) and (2.2). Finally, Table 1 has estimates of the speedup 

resulting from the PRTA model relative to the full DLA calculation, 

 

€ 

speedup =
tDLA
tRPTA

 (3.2) 

where 

! 

tDLA  and 

€ 

tRPTA  are the times to compute line strengths and positions in the full and small-

scale DLA calculations. It is stressed that the speedup does not reflect any timesaving associated 

with generating the spectrum using a reduced number of lines. This potential savings was 

excluded since it depends on the number of points in the photon frequency mesh. In some cases 

the computation time of the small-scale DLA calculation was not large enough to record 

accurately and was overestimated so the speedup is only a lower bound. 

3.1 Example I 

The first example is the transition array 

€ 

3d5 2
2 4 f7 2 →3d5 24 f7 2

2  in Cd+24 with  

 

! 

[Mg]3p1 2 3p3 2
3 3d3 2

2 3d5 2
2 4s1 2

2 4 f5 24 f7 2  (3.1.1) 

for initial configuration. The spectra are plotted in Fig. 1 using DLA, UTA, and PRTA with 3 

subshells (

€ 

3p3 2
3  plus active subshells) in the main group. The figure shows the PRTA and DLA 

in good agreement with a large computational savings for the former (see Table 1). On the other 

hand, the UTA does not capture the sharpness of the array and shoulder on the low energy wing. 
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3.2 Example II 

This example involves an inner shell excitation in Tm+41 with active subshells 

€ 

2p3 2
4 4d5 2 →2p3 2

3 4d5 2
2  and initial configuration 

 

€ 

[Mg]3p1 2
2 3p3 2

2 3d3 2
4 4s1 2

2 4 p1 2 4 p3 2 4d3 24d5 24 f7 2
2  (3.2.1) 

The spectra are presented in Fig. 2 and the DLA results show a bimodal feature missed by the 

UTA approach. On the other hand, the PRTA results with 3 or 4 subshells in the main group 

(

€ 

3p3 2
2  and 

€ 

3p3 2
2 4 p3 2 plus active subshells) are in reasonable agreement with the DLA 

calculation with a speedup of more than three orders of magnitude. 

3.3 Example III 

The last example in this Section considers 

€ 

3d5 2
2 →3d5 2 4 p1 2  in Ni+4 for the initial 

configuration in Eq. (3.1.1). This example has some artificial aspects. Firstly, jj-coupling does 

not correspond well to the physical conditions [8]. Secondly, such configurations in a weakly 

ionized atom are probably subject to significant autoionization and configuration interaction 

effects neglected here [8]. Nevertheless, it tests when the central electron-nuclear interaction is 

reduced relative to the electron-electron interactions producing the term structure [8]. 

The results in Fig. 3 show the PRTA calculations with 3 subshells (

€ 

3p1 2  plus active 

subshells) in the main group reasonably reproducing the DLA calculations.  The UTA spectrum, 

however, is not in as good agreement with the DLA results. To emphasize the envelope of the 

line spectrum, DLA calculations with a larger Lorentz width are added to the figure. 

4. Numerical examples: Multiple transition arrays 

Plasma models often consider individual transition arrays accumulating the results to 

construct the total bound-bound spectrum. To simulate this procedure, examples are provided 

that add the spectra from many transition arrays. The calculations choose a temperature 

according to Section 3 and use the same intrinsic profile. Table 2 gives details similar to those in 

Table 1. Recall that the speedup only compares the time generating line strengths and positions. 

4.1 Calculations with DLA and UTA models 

For comparisons DLA calculations for all the individual transition arrays are performed as 

described in Section 3. In addition, separate calculations using the spin-orbit split-array UTA 

approach [3] for all individual transition arrays were performed. 
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4.2 Calculations with PRTA model 

In the examples the following recipe is used for the PRTA calculations. Firstly, since the 

primary purpose of the PRTA model is to improve on the UTA approximation whenever the 

DLA method is deemed impractical, transition arrays with a small number of lines are done 

explicitly with DLA. Here the limit is set at 

! 

104  lines for individual transition arrays. 

Secondly, the active subshells are always included in the small-scale DLA portion of the 

calculation. The maximum number of subshells in the main group is limited by 

 

€ 

MK = Min M − 2,4[ ] (4.2.1) 

where 

€ 

M  is the total number of open subshells. For 

€ 

MK ≥ 3 , the first passive subshell included 

in the main group is the one with the largest contribution to the variance; that is, 

 

€ 

ν3 g3 −ν3( )σ 2 λ3η1 →λ3η2( ) = Max νm gm −νm( )σ 2 λmη1 →λmη2( ){ }
m=3

M
 (4.2.2) 

If a fourth subshell is to be included in the main group it is the subshell with the next largest 

variance. Note that a fourth subshell is included if 

 

€ 

ν4 g4 −ν4( )σ 2 λ4µ1 →λ4µ2( )
ν3 g3 −ν3( )σ 2 λ3µ1 →λ3µ2( )

> 0.1 (4.2.3) 

and 

 

€ 

σK
2 3 subshells( )

σtot
2 > 0.3 (4.2.4) 

otherwise only 3 subshells define the main group. 

4.3 Calculations with mixed DLA-UTA model 

In order to help evaluate the PRTA scheme described in Section 4.2, another model in 

addition to a all DLA or UTA calculation is considered. Again the DLA method is applied 

whenever the number of lines in a transition array does not exceed 104; otherwise the UTA 

approach is applied. Except for the choice of cutoff value, such a scheme mimics existing mixed 

DLA-UTA capabilities [1]. 

4.4 Example IV 

The first example in this Section returns to Cd+24 with transitions 

 

€ 

3d4 →3d34 f  (4.4.1a) 

and initial configuration 
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€ 

[Mg]3p4 3d4 4s2 4 f 2  (4.4.1b) 

Although the notation is non-relativistic (  

! 

n! for subshell), jj-coupling is used and all dipole 

allowed relativistic configurations pairs (  

! 

n!j  for subshell) represented in Eq. (4.4.1) are included 

in the spectrum. Spectra are compared in Fig. 4 and Table 2 gives details. Although the spectrum 

using strictly the UTA approach is not in poor agreement with the DLA calculation, the PRTA 

results show better agreement and significant computational savings relative to the full DLA 

calculation. On the other hand, the mixed DLA-UTA calculation overlays the UTA result adding 

a few narrow, weak DLA features. 

4.5 Example V 

The final example considers the 

€ 

Δn = 0  transitions 

€ 

3p4 3d3 →3p33d4  in Ni+5 for the initial 

configuration 

 

€ 

[Mg]3p4 3d3 4s2 4 p2 (4.5.1) 

Similar reservations as Example III apply here. The results in Fig. 5 show the mixed DLA-UTA 

and PRTA approaches reasonably reproducing the DLA results for the spectrum. Obviously the 

UTA calculation cannot reproduce the detailed lines. To confirm that the PRTA scheme offers 

benefits, Fig 6 displays similar calculations using a larger Lorentz width for the intrinsic profile 

that causes significant line overlap. 

The temperature dependence of the spectrum is explored in Fig. 7 where the calculations 

were repeated at a lower temperature. To emphasize the envelope of the line distribution, the 

calculations used a larger Lorentz width. The figure shows that the PRTA model, which partially 

accounts for the initial population induced shift, agrees best with the DLA results. 

 5. Conclusions 

A novel partially resolved transition array (PRTA) method was presented that relies on the 

additive form of the variance formula to split the single feature in the unresolved transition array 

(UTA) approach into a series of Gaussians while conserving known properties. The PRTA 

method significantly accelerates detailed line accounting (DLA) calculations and provides better 

accuracy than models relying on the UTA model. 

The PRTA approach separates the open subshells in the transition array into main and 

secondary groups. The main group is treated with DLA methods to obtain line strengths and 

energies while the secondary group is treated statistically. The secondary group contributes to the 
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spectrum by assigning their portion of the variance, which is computed from existing analytic 

formulas, to each line from the small-scale DLA calculation. The PRTA conserves the total 

oscillator strength as well as the strength-weighted energy mean and variance of the transition 

array. It also improves on the higher energy strength-weighted moments and corrects for initial 

level population effects in a systematic manner. 

The numerical examples show that although the UTA method is in general a reasonable 

approximation, the PRTA scheme significantly improves agreement with DLA calculations only 

using a small fraction of the computational effort of the full calculations. The PRTA approach 

may also prove superior for statistical line-by-line approaches [13] where the individual lines are 

generated randomly. Such methods require the strength-energy distribution, which is not known 

and is often approximated by formulas containing free parameters constrained by known exact 

results. On the other hand, in the PRTA scheme the small-scale DLA calculation gives a good 

approximation to the energy-strength distribution of the transition array. In addition, only the line 

splitting produced by the secondary electrons is treated randomly. It is expected that random line 

treatments based on the PRTA method can account for systematic near coincidences from 

transition arrays differing only in the distribution of weakly coupled electrons avoiding 

overestimates of the opacity [14]. 

The success of the PRTA is readily explained. If the main group contains the strongly 

coupled electrons to the transition, then the weakly coupled electrons in the secondary group add 

a relatively small splitting of the lines in the small-scale DLA calculation without significantly 

redistributing line strengths. The statistical population approximation of the initial levels is also 

limited to the secondary group and the main temperature dependence contained in the initial 

level occupations is accounted in the DLA lines. Although the impact of the secondary group on 

the spectrum is relatively small, it can dramatically increase the computational effort in the DLA 

calculations. The examples suggest that constructing the main group so that it retains at least 

70% of the variance squared leads to good agreement with DLA calculations. 

The recipe defining main and secondary subshells for the PRTA calculations in Section 4 is 

not intended as universal. It is expected that researchers will vary the computational effort in the 

small-scale DLA calculation depending on applications and computer resources. Although not 

attempted in the present work, it is not necessary to include all the electrons in a passive shell in 

the main group. It is possible to include some of the spectator electrons in a given passive 
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subshell leaving other electrons to the secondary group. This segments the variance into smaller 

increments and could improve the results without significantly increasing the computational 

effort. Finally, the present numerical examples used jj-coupling, but the concept is obviously 

applicable to LS or intermediate coupling with suitable modifications. 

 

Acknowledgments: It is pleasure to thank Brian G. Wilson for corrections to the manuscript. This 

work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 

National Laboratory under Contract DE-AC52-07NA27344. 
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Appendix 

Calculation of transition array lines and moments  

Consider a dipole transition array linking the initial configuration 

€ 

Cb  and final configuration 

€ 

Ca . It is assumed that the two electronic configurations are described by Hamiltonians in distinct 

atomic subspaces. Consequently, the spectrum at photon energy   

! 

!"  can be written in terms of 

the function [15] 

 
  

€ 

A ω( ) = π −1 Im dT ⋅ ω − iΓ( )I − L{ }
−1
d⎡ 

⎣ ⎢ 
⎤ 
⎦ ⎥  (A.1) 

where 

€ 

Γ is the natural width, 

 

€ 

I = Ia ⊗ Ib  (A.2) 

and 

 

€ 

L = Ha ⊗ Ib − Ia ⊗Hb  . (A.3) 

Here, 

! 

Ha  and 

! 

Hb  are the configuration Hamiltonians, 

! 

Ia  and 

! 

Ib  are identity matrices in the 

configuration subspaces, 

! 

" denotes the Kronecker or inner product, the superscript 

! 

T  denotes a 

transpose, and 

€ 

uT ⋅ w  denotes a vector dot product. The vector 

! 

d  is defined by 

 

! 

d = vec D( )  (A.4) 

with 

! 

D the dipole-transition matrix [8] and the 

! 

vec  operation creates a column vector from a 

matrix by stacking the columns of the matrix below one another. 

A.1 Line-by-line calculation 

The standard line-by-line calculation involves and eigendecomposition of the Hamiltonian 

matrices [8], 

 

€ 

QcHc = EcQc  (A.1.1) 

where 

€ 

c = a or b,   

€ 

Ec = diag εc1,εc2,…{ }  with !c  the eigenvalues of 

! 

Hc , and the columns of the 

matrix 

! 

Qc  are the eigenvectors. Since 

! 

Hc  is real and symmetric (Hermitian), the !c 's  are real 

and 

! 

Qc  is a similarity transformation; that is, 

! 

QcQc
T =Qc

TQc = Ic . 

Applying the eigendecomposition in Eq. (A.1.1) to the function in Eq. (A.1); that is, use 

 

€ 

Qa ⊗Qb( )L = Ea ⊗ Ib − Ia ⊗ Eb[ ] Qa ⊗Qb( ) (A.1.2) 

to get 

 
  

€ 

Lim
Γ→ 0

A ω( ) = −1 snδ ω −ω n( )
n=1

N

∑  (A.1.3) 
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where the sum is over all lines of the transition array. The strength and energy of the 

€ 

nth  line are 

 

€ 

sn = nth element of vec Qb
TDQa( )[ ]{ }

2

 , (A.1.4a) 

   

€ 

ω n = nth eigenvalue of Ea ⊗ Ib − Ia ⊗ Eb[ ] , (A.1.4b) 

which agree with the standard atomic data calculations [8]. 

A.2 Moment calculation 

The frequency moments of the function 

€ 

A ω( )  are related to its expansion in powers of the 

operator 

€ 

L  [16], 

 

  

€ 

Mq = dωω q Lim
Γ→ 0

A ω( )⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

−∞

∞

∫

= dT ⋅ L ( )q d
 (A.2.1) 

Using the eigendecomposition in Eq. (A.1.2) together with the formula 

 

€ 

B⊗ A( )vec D( ) = vec ADBT( )  (A.2.2) 

it can be readily shown that the energy moments in Eq. (1.1) can be expressed as 

   

€ 

µq = S−1qMq  (A.2.3) 

Furthermore, repeated use of Eq. (A.2.2) yields for the frequency moments 

 

€ 

Mq = vec D( )T ⋅ −1( )q q!
k! q − k( )!

vec Hb
qDHa

q−k( )
k=0

q

∑  (A.2.4) 

Consequently, the calculation of the transition array strength-energy moments can be performed 

by constructing the Hamiltonian and dipole-transition matrices, but does not require the 

eigendecomposition of the Hamiltonian matrices as implied by Eq. (1.1). 

A.3 Operation count 

For simplicity assume that the matrices 

! 

Ha  and 

! 

Hb  cannot be further reduced into diagonal 

blocks (if 

! 

Ha  and 

! 

Hb  represent a diagonal block of the total Hamiltonian, then the total spectrum 

is obtained by summing over all such blocks). Thus, 

! 

Ha  and 

! 

Hb  are square matrices of size 

€ 

na × na  and 

€ 

nb × nb , respectively, 

! 

D is rectangular of size 

€ 

nb × na , which generates 

€ 

N = nanb  

spectral lines. Also assume that 

€ 

na ≈ nb ≈ n . 
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The operation count to obtain the line strengths and energies is given by the 

eigendecomposition of two real symmetric matrices plus the two matrix multiplications in 

Eq. (A.1.4a) and is therefore [17] 

 

€ 

CDLA ≈19n
3 +O n2( )  (A.3.1) 

The operation count to obtain 
  

€ 

M1,,Mq{ } using Eq. (A.2.4) is 

 

€ 

Cq ≈ 2qn
3 +O n2( ) (A.3.2) 

(care is necessary not to double count some operations giving 

€ 

q2 for the coefficient). Ignoring 

possible acceleration from optimized subroutines (e.g.; matrix multiply), a comparison of the 

operation counts shows that computing the moments exceeds the cost of the DLA results at 

€ 

q ≈10 . More importantly, the cost of calculating each moment is 

€ 

O n3( ) , which is impractical for 

large-scale transition arrays. 

A.4 Initial populations 

Following the approximations in the UTA approach [2,3], Eq. (A.1) assumes statistically 

populated initial levels. To include initial level populations explicitly, replace the second dipole 

vector in Eq. (A.1) by [15] 

 

€ 

d→vec ρD( )  (A.4.1) 

where 

€ 

ρ  is the density matrix for the initial configuration, which in local thermal equilibrium is 

a functional of 

€ 

Hb . The result in Eq. (A.2.4) now becomes 

 

€ 

Mq →vec D( )T ⋅ −1( )q q!
k! q − k( )!

vec Hb
qρDHa

q−k( )
k=0

q

∑  (A.4.2) 

and is considerably more difficult to evaluate without the spectrum of 

€ 

Hb  than Eq. (A.2.4). 
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TABLE 1 

Model comparison for single arrays 
 

 DLA PRTA 

Example 

€ 

Ma  

€ 

Nb  

€ 

MK
a  

€ 

Kb  

€ 

R Speedup 

I 6 4,499,474 3 1351 0.88 >500c 

3 145 0.83 >5000c  
II 

 

7 

 

11,437,332 
 

4 1829 0.99 >5000c 

III 7 4,708,759 3 10 0.85 >750c 
 

a Number of open subshells in the full or small-scale DLA calculation. 
b Number of lines in the full or small-scale DLA calculation. 
c Calculation times for the small-scale DLA are too small to determine accurately. 

 

 

 

 

TABLE 2 

Model comparison for multiple arrays 
 

 DLA UTA Mixed DLA-UTA PRTA 

Example 

€ 

N∑
a
 

€ 

NUTA
b  

€ 

N∑
a
 

€ 

NUTA
b  

€ 

K∑
a
 Speedup 

IV 74,958,755 108 82,059 81 235,308 225 

V 1,936,718 96 118,973 31 137,993 10 

 
a Total number of lines in the full, mixed, or small-scale DLA calculation. 
b Number of transition arrays treated with UTA approach. 
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Figure Captions 

Fig. 1 Spectrum calculations for Example I with 

€ 

T =150eV and 

€ 

Γ = 0.02eV : DLA (solid black), 

UTA (dash black), PRTA with 3 subshells in the main group (red). 

Fig. 2 Spectrum calculations for Example II with 

€ 

T = 360eV and 

€ 

Γ = 0.7eV : DLA (solid black), 

UTA (dash black), PRTA with 3 (red) and 4 (green) subshells in the main group. 

Fig. 3 Spectrum calculations for Example III with 

€ 

T =11eV  and 

€ 

Γ = 0.004eV : DLA (solid 

black), UTA (dash black), PRTA with 3 subshells in the main group (red). Also, DLA 

calculation with 

€ 

Γ = 0.3eV  (green). 

Fig. 4 Spectrum results for Example IV with 

€ 

T =150eV and 

€ 

Γ = 0.02eV : DLA (solid black), 

UTA (dash black), mixed DLA-UTA (blue), and PRTA (red). 

Fig. 5 Spectrum results for Example V with 

€ 

T = 20eV  and 

€ 

Γ = 0.001eV : DLA (solid black), 

UTA (dash), mixed DLA-UTA (blue), and PRTA (red). 

Fig. 6 Same as Fig. 5 with 

€ 

Γ = 0.3eV . 

Fig. 7 Same as Fig. 5 with 

€ 

T = 5eV  and 

€ 

Γ =1eV . 
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Fig. 1 Spectrum calculations for Example I with 

€ 

T =150eV and 

€ 

Γ = 0.02eV : DLA (solid black), 

UTA (dash black), PRTA with 3 subshells in the main group (red). 
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Fig. 2 Spectrum calculations for Example II with 

€ 

T = 360eV and 

€ 

Γ = 0.7eV : DLA (solid black), 

UTA (dash black), PRTA with 3 (red) and 4 (green) subshells in the main group. 
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Fig. 3 Spectrum calculations for Example III with 

€ 

T =11eV  and 

€ 

Γ = 0.004eV : DLA (solid 

black), UTA (dash black), PRTA with 3 subshells in the main group (red). Also, DLA 

calculation with 

€ 

Γ = 0.3eV  (green). 
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Fig. 4 Spectrum results for Example IV with 

€ 

T =150eV and 

€ 

Γ = 0.02eV : DLA (solid black), 

UTA (dash black), mixed DLA-UTA (blue), and PRTA (red). 
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Fig. 5 Spectrum results for Example V with 

€ 

T = 20eV  and 

€ 

Γ = 0.001eV : DLA (solid black), 

UTA (dash), mixed DLA-UTA (blue), and PRTA (red). 
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Fig. 6 Same as Fig. 5 with 

€ 

Γ = 0.3eV . 
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Fig. 7 Same as Fig. 5 with 

€ 

T = 5eV  and 

€ 

Γ =1eV . 


